IMPEX - AN INFRASTRUCTURE FOR JOINT ANALYSIS OF SPACE MISSIONS AND COMPUTATIONAL MODELLING DATA IN PLANETARY SCIENCE

Michel Gangloff, michel.gangloff@irap.omp.eu
IRAP / Université de Toulouse - CNRS, Toulouse, France
IMPEX Team
Maxim Khodachenko 2, Esa Kallio 3, Vincent Génot 1, Tarek Al-Ubaidi 2, Florian Topf 2, Walter Schmidt 3, Igor I Alexeev 4, Ronan Modolo 5, Nicolas André 1, Elena S. Belenkaya 4, Elena Budnik 1, Myriam Bouchemit 1, Benjamin Renard 1, Emmanuel Penou 1, Natalya Bourrel 1, Sébastien Hess 5, Bruno Besson 6, Nicolas Dufourg 6. 1. IRAP, CNRS & UPS, Toulouse, France. 2. Space Research Institute, Austrian Academy of Sciences, Graz, Austria. 3. Finnish Meteorological Institute, Helsinki, Finland. 4. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russian Federation. 5. LATMOS, CNRS & UVSQ, Guyancourt, France. 6. CNES, Toulouse, France.

The FP7-SPACE project Integrated Medium for Planetary Exploration (IMPEX) was started in June 2011. The aim of the project is the creation of an integrated interactive IT framework where data from space missions will be interconnected to numerical models, providing a possibility to 1) simulate planetary phenomena and interpret spacecraft data; 2) test and improve models versus experimental data; 3) fill gaps in measurements by appropriate modelling runs; 4) solve technological tasks of mission operation and preparation. Specifically, the ‘modeling sector’ of IMPEX is formed of four well established numerical codes and their related computational infrastructures: 1) 3D hybrid modeling platform HYB for the study of planetary plasma environments, hosted at FMI; 2) an alternative 3D hybrid modeling platform, hosted at LATMOS; 3) MHD modelling platform GUMICS for 3D terrestrial magnetosphere, hosted at FMI; and 4) the global 3D Paraboloid Magnetospheric Model for simulation of magnetospheres of different Solar System objects, hosted at SINP. Modelling results will be linked to the corresponding experimental data from space and planetary missions via several online tools: 1/ AMDA (Automated Multi-Dataset Analysis) which provides cross-linked visualization and analysis of experimental and numerical modelling data, 2/ 3DView which will enable 3D visualization of spacecraft trajectories in simulated and observed environments, and 3/ CLWeb software for computation of various micro-scale physical products (spectra, distribution functions, etc.). In practice, IMPEX is going to provide an external user with an access to an extended set of space and planetary missions’ data and powerful, world leading computing models, equipped with advanced visualization tools. Via its infrastructure, IMPEX will enable to merge spacecraft data bases and scientific modelling tools, providing their joint interconnected analysis for the better understanding of related space and planetary physics phenomena. The interconnection
between the tools participating in IMPEx is based on webservice and a messaging protocol. IMPEx tries to use as often as possible widely accepted standards for the metadata allowing to efficiently search and retrieve observational and modelling data for their joint utilisation.